Supervised clustering of label ranking data using label preference information
نویسندگان
چکیده
منابع مشابه
Supervised Clustering of Label Ranking Data
In this paper we study supervised clustering in the context of label ranking data. Segmentation of such complex data has many potential real-world applications. For example, in target marketing, the goal is to cluster customers in the feature space by taking into consideration the assigned, potentially incomplete product preferences, such that the preferences of instances within a cluster are m...
متن کاملInformation Retrieval Using Label Propagation Based Ranking
The IR group participated in the crosslanguage retrieval task (CLIR) at the sixth NTCIR workshop (NTCIR 6). In this paper, we describe our approach on Chinese Single Language Information Retrieval (SLIR) task and English-Chinese Bilingual CLIR task (BLIR). We use both bi-grams and single Chinese characters as index units and use OKAPI BM25 as retrieval model. The initial retrieved documents are...
متن کاملLabel Ranking with Semi-Supervised Learning
Label ranking is considered as an efficient approach for object recognition, document classification, recommendation task, which has been widely studied in recent years. It aims to learn a mapping from instances to a ranking list over a finite set of predefined labels. Traditional solutions for label rankings cannot obtain satisfactory results by only utilizing labeled data and ignore large amo...
متن کاملFeature ranking for multi-label classification using predictive clustering trees
In this work, we present a feature ranking method for multilabel data. The method is motivated by the the practically relevant multilabel applications, such as semantic annotation of images and videos, functional genomics, music and text categorization etc. We propose a feature ranking method based on random forests. Considering the success of the feature ranking using random forest in the task...
متن کاملMulti-label ASRS Dataset Classification Using Semi Supervised Subspace Clustering
There has been a lot of research targeting text classification. Many of them focus on a particular characteristic of text data multi-labelity. This arises due to the fact that a document may be associated with multiple classes at the same time. The consequence of such a characteristic is the low performance of traditional binary or multi-class classification techniques on multi-label text data....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2013
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-013-5374-3